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Introduction

• The problem of using data and physical information in
the identification of complex nonlinear systems is considered.

•When possible, physical laws of involved phenomena are used
to derive the structure of the model, depending on some para-
meters, whose values are tuned using measured data.

• In many practical applications the required physical laws are
too complex to derive accurate structures.

⇓
large identification errors

• In such cases input-output (black-box) models are used.
⇓

physical information difficult to account for
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Introduction

• Experimental modeling: input-output or black-box models
are used, e.g. in regression form:
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Problem:

Find estimate cf of fo = [f 1o , ..., f qo ]
possibly giving “small” identification error

• The usual approach is to assume that fo belongs to a finitely
parametrized set of functions f (θ). Data are used to estimate
the parameters θ.

• Basic to this approach is the choice of the set of functions f (θ),
typically realized by some search on different functional forms:
linear, bilinear, polynomial, neural networks, etc.

Drawbacks: − this search may be quite time consuming and
− leads to approximate model structures
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Nonlinear SM identification

• References:
— M. Milanese and C. Novara, “Optimality in SM Iden-
tification of Nonlinear Systems”, SYSID 2003, Rotter-
dam, the Netherlands, 2003.

— M. Milanese and C. Novara, “Set Membership estima-
tion of nonlinear regressions”, IFAC 2002, Barcelona,
Spain.

• Key features:
— The method allows to identify nonlinear model sets.

— No assumptions on the functional form of fo are required.
Regularity assumptions, given by bounds on the gradient
of fo, are used.

— No statistical assumptions on noise are made. Noise is only
supposed to be bounded.

— The complexity/accuracy problems posed by the choice
of the suitable parametrization of the nonlinear regression
function are circumvented.
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Alternative approach:
Structured (block-oriented) modeling

.

use of information on
the physical interconnection structure

⇓
decomposition in

interacting subsystems

⇓
identification of low dimensional subsystems

and estimation of their interactions
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Structured experimental modeling

• Typical cases considered in the literature: Hammerstein, Wiener
and Lur’e systems.

Figure 1: a) Hammerstein System. b) Lur’e system.

• In practical applications more complex structures may be needed,
e.g. composed of many subsystems and with nonlinear dy-
namic blocks.
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Structured experimental modeling

The following decomposition structure is considered:

Figure 2: Structure decomposition.

• All the signals u, y, v may be multivariable.
• SubmodelsM1 andM2 are dynamic MIMO discrete time sys-
tems. M1 is nonlinear and M2 is linear.

• v =M1[u, y] , y =M2[v] =M [u]

Problem:
Identify M1 and M2, supposing that u, y are known, but v is
unknown.

Note: Hammerstein, Wiener and Lur’e models are particular
cases.
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Structured identification algorithm

- Initialization:

- Partition the data in estimation data set ue, ye and validation
data set uv, yv

· Get an initial guess M (o)
2 for M2 and set M

(o)
1 = 0

· Set k=1
- Iteration k:

1. Compute a sequence v(k) such that M
(k−1)
2 [v(k)] ≈ ye

2. Identify a nonlinear regression model gM (k)
1 using ue and ye

as input sequences and v(k) as output sequence

3. Identify a linear model gM (k)
2 using fv(k) = gM (k)

1 [u
e, ye] as

input sequence and ye as output sequence

4. Compute α∗ = argminα∈R2 J(α, k)
where:

J(α, k) = ||yv − y(k)α ||22
y(k)α =M(Mα

1 ,M
α
2 )[u

v]

Mα
1 =M

(k−1)
1 + α1(

gM (k)
1 −M

(k−1)
1 )

Mα
2 =M

(k−1)
2 + α2(

gM (k)
2 −M

(k−1)
2 )

5. Set M
(k)
1 = Mα∗

1 , M
(k)
2 = Mα∗

2 , k = k + 1 and return to
step 1
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Structured experimental modeling

• Let M (k)
∗ be the overall model identified from the estimation

data set (ue, ye) at iteration k

• The quality of M (k)
∗ is measured by the simulation error

on the validation data set (uv, yv):

J∗(k) = ||yv −M (k)
∗ [u

v]||22
• Choosing α = 1, the algorithm reduces to classical iterative
algorithm proposed for Hammerstein model.

•With α = 1, J∗(k) may blow up for increasing k. This cannot
happen using the proposed algorithm, as stated in the follow-
ing proposition.

Proposition

J∗(k + 1) ≤ J∗(k), ∀k

9



Politecnico di Torino M. Milanese, C. Novara and L. Pivano

Structured experimental modeling

• In step 1, v(k) can be computed as v(k) = M †
2 [y

e] where M †
2

is an approximate stable inverse of M
(k)
2 computed by solving

the following H∞ optimization problem:

M †
2 = argmin

Q∈H∞
k[1−M

(k)
2 Q]Wk∞

W is a low pass filter chosen on the basis of the spectral fea-
tures of measured signals y and of noise affecting such mea-
surements.

• Even in case a stable right inverse ofM (k)
2 exists, the use ofM †

2

instead of the exact inverse is preferable, in order to avoid un-
duly amplification of the effects of noise outside the frequency
range of interest for y.

• In step 2, the Nonlinear SM identification method can be used
in order to avoid the need of extensive and time consuming
searches of suitable functional forms of the regression function.
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Identification of vehicles
with controlled suspensions

• Identification is performed on simulated data obtained by the
following half-car model:

Figure 3: The half-car model.

- prf and prr: front and rear road profiles.
- isf and isr: control currents of front and rear suspensions.
- acf and acr: front and rear chassis vertical accelerations.
- pcf and pcr: front and rear chassis vertical positions.
- pwf and pwr: front and rear wheels vertical positions.
-Fcf andFcr: forces applied to chassis by front and rear suspensions.

-Fwf andFwr: forces applied to front and rear wheels by tires.
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Identification of vehicles
with controlled suspensions

• The chassis, the engine and the wheels are simulated as rigid
bodies.

• Static nonlinearities have been considered for suspensions and
tyres:

Figure 4: a) Force-velocity chracteristic of suspension. b) Force-displacement characteristic of tires.
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The data

• Data set generated from “true system” simulation:
— Recorded variables: prf , prr, isf , isr, acf and acr.

— Sampling time: τ = 1/512 sec.

— Road profile: random with amplitude ≤ 2.6 cm.
• Estimation set:
— 10240 data corresponding to 20 seconds of “true system”
simulation.

— Corrupted by a uniformly distributed noise of relative am-
plitude 5%.

— Used for models identification.

• Validation set:
— 2049 data, corresponding to 4 seconds of “true” data not
used for estimation.

— Used to test the simulation accuracy of identified models.
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Unstructured identification
of vehicles vertical dynamics

• Measured variables: prf , prr, isf , isr, acf and acr.
• Unstructured identification: Two nonlinear model, not using
information on system structure, have been identified:

— NSMU: Nonlinear Set Membership

— NNU: Neural Network

Figure 5: Unstructured model blocks diagram.
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Structured identification
of vehicles vertical dynamics

• Measured variables: the same as for unstr. identification.
• Structured identification: The system is decomposed in sub-
systems:

Figure 6: Generalized Lur’e form of half-car model.

• CE : Chassis + engine
• SWT : Suspension + wheel + tyre

Note: The forces Fcf and Fcr are not measured.
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Structured identification
of vehicles vertical dynamics

• Amodel, called NSMS, has been identified using the structured
identification algorithm, with the following choices:

— The initial model required at step 1 has been obtained from
the laws of motion, assuming chassis and engine as a unique
rigid body.

— In step 3, discrete time nonlinear models of SWTf and
SWTr were identified using the Nonlinear SM approach.

— In step 4, the models of CE are linear Output Error models
identified by means of the Matlab Identification Toolbox,
with inputs Fcf , Fcf and outputs acf ,acr.

• Significant improvements of chassis accelerations errors have
been obtained after 2 iterations.

• A third iteration has been also performed, but no significant
decrease of errors have been observed.
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Simulation results

Model NSMU NNU NSMS(1) NSMS(2)

RMSE 0.656 0.660 0.502 0.208

Table 1: Root mean square front chassis acceleration errors on the validation data set.
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Structured identification
of vehicles vertical dynamics

Figure 7: Bode plots of CE(1, 1): “true” (bold line), initial model (dashed line), model at iteration 2 (thin
line).

Figure 8: Forces applied to chassis from suspensions: “true” (bold line), estimate at iteration 1 (dashed line),

estimate at iteration 2 (thin line).
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Simulation results

Figure 9: Front chassis accelerations: “true” (bold line), NSMU model (thin line).

Figure 10: Front chassis accelerations: “true” (bold line), NSMS(2) model (thin line).
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Conclusions

• An approach for block-oriented identification able to deal with
complex structures has been proposed. The key features of the
approach are:

— The nonlinear subsystems can be dynamic.

— The nonlinear subsystems are not supposed to have a given
parametric form.

• A structured identification algorithm has been presented, guar-
anteeing that the identification error does not increase at each
algorithm iteration.

• The effectiveness of the approach has been tested on a simu-
lated half-car model for vehicles vertical dynamics.

• The identified structured models in few iterations reduced sig-
nificantly the simulation errors, largely improving over un-
structured models and reaching quite satisfactory identifica-
tion accuracy.

• The algorithm has also been used with success in identification
from experimental data acquired on a real car.
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